祖冲之究竟是用什么方法将π算到小数点后第七位,又是怎样找到既精确又方便的密率的呢?它己不是困惑数学家的一个谜;更不是被列为公众关注的未解科学难题之一---------
他研究出的圆球率,根据球体大小比值数“不变真理”为依据,演绎、推理出一系列最简单、最全面、最科学的球体求算方法,打破了几千年以前古代数学家祖冲之对“圆周率”推理不先进、不科学的原始估算方法;他从科学的角度上为人们彻底地揭开了古代数学家祖冲之发明圆周率π=3.1415926—7小数点后七位数之谜,他为数学球体知识的来自方法终于划上一个圆满句号---。他,就是在数学领域独具创见的魏德武老师。魏德武1963年生,福建沙县人。80年代初,研发者魏德武因遭到福建省永安公检法黑恶势力的残酷迫害,他发明的这项数学科研成果一直都得不到发扬光大。在此中国互联网新闻中心(中国网)对该项成果做出了充分肯定,认为该成果的确不失为一种好方法,特推出报道,大家都知道真正最有价值的知识来自于方法,古代数学家祖冲之发明的所谓“圆周率”;在数学书中,他只告诉世人“圆周率”的发明结果,却没有告诉“圆周率”发明的来自方法,可见,古代数学家祖冲之对球体知识只知其所以不知其所以然;尤其是祖冲之发明的“圆周率”在计算精确度小数点后七位小数的来自方法,在史书中根本就无从查证,人们对“圆周率”的来自方法不得而知,迄今还是一个谜,缺乏了科学依据。魏氏圆周率的来自方法就不同了,它完全是根据相似球体大小比值数不变真理为支撑而得,圆周率它可以直接借助尺寸的方法,只要精确地测出其中一个圆球体的圆直径和圆周长的长度即可,然后依据相似比其比值数不变的原理,圆周率完全可以用分数:K=D/L=113/355或k=L/D=355/113的方法来表示,该结论是魏老师通过对无数组比值数的对比和验证,最终确定113/355和355/113为圆周率的最佳优选数。在圆周率K=0.3183098591549-----或圆周率k=3.14159---等小数后,它可以直接精确到无数位小数。从而为后人彻底地揭开了古代数学家“祖冲之”发明的圆周率小数点后七位数来自方法之谜。显而易见圆球率的再现,最重要的一点,并不在仅此而已,其推出的主要原因就是通过一个真实的记载,20世纪70年代一位13岁少年对“圆球率”的数学思维和研发过程为例举,从而达到引导和启发学生去创思维、创方法、创意思、创精神,培养学生都能养成一种独立思考解决问题的能力