世界三大悖论:
1、毕达哥拉斯悖论
约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为“四艺”,在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
2、贝克莱悖论
数学史上把贝克莱的问题称之为“贝克莱悖论”。笼统地说贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式逻辑而言,这无疑是一个矛盾。
3、罗素悖论
罗素悖论:设性质P(x)表示“x不属于A”,现假设由性质P确定了一个类A——也就是说“A={x|x∉A}”。那么问题是:A属于A是否成立?
首先若A属于A,则A是A的元素,那么A具有性质P,由性质P知A不属于A;其次若A不属于A,也就是说A具有性质P,而A是由所有具有性质P的类组成的,所以A属于A。
扩展资料:
1、悖论通常是指这样一种命题,按普遍认可的逻辑推理方式,可推导出两个对立的结论,形式为:如果事件A发生,则推导出非A,非A发生则推导出A。
2、在19世纪末至20世纪初,逻辑和数学的基础受到许多困难(所谓的悖论)的发现的影响,特别是经典集合论中被发现有自相矛盾的现象,尤其是罗素悖论,以极为简明的形式震撼了数学的基础,这就是“第三次数学危机”。
这些难题涉及基本概念以及定义和推理的基本方法,这些以前通常被认为是没有问题的。