学数学的好处如下:
1、数学是一切科学的基础,一切重大科技进展无不以数学息息相关。没有了数学就没有电脑、电视、航天飞机,就没有今天这么丰富多彩的生活。
2、数学是一种工具学科,是学习其他学科的基础,同时还是提高人的判断能力、分析能力、理解能力的学科。
3、数学不仅是一门科学,而且是一种普遍适用的技术。它是科学的大门和钥匙,学数学是令自己变的理性的一个很重要的措施,数学本身也有自身的乐趣。
4、数学能让你思考任何问题的时候都比较缜密,而不至于思绪紊乱。还能使你的脑子反映灵活,对突发事件的处理手段也更理性。
5、数学给予人们的不仅是知识,更重要的是能力,这种能力包括观察实验、收集信息、归纳类比、直觉判断、逻辑推理、建立模型和精确计算。这些能力和培养,将使人终身受益。
6、经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂……数学思想方法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学生良好思维品质的催化剂。
7、数学与我们的生活有着密切的联系,让学生认识到现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用,并从中体会到数学的价值,增进对数学的理解和应用数学的信心等。
8、让学生体会到数学源于生活、用于生活的同时更应该让学生体会到数学高于生活,体会到数学可以带动社会的发展,带动生活质量的提高,这样更能激发学生学好数学。
9、数学应用之广泛,小至日常生活中柴米油盐酱醋茶的买卖、利率、保险、医疗费用的计算,大至天文地理、环境生态、信息网络、质量控制、管理与预测、大型工程、农业经济、国防科学、航天事业均大量存在着运用数学的踪影。
扩展资料
数学的严谨性:
1、数学语言亦对初学者而言感到困难,如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思,
2、数学术语亦包括如同胚及可积性等专有名词,但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性,数学家将此对语言及逻辑精确性的要求称为“严谨”。
3、严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去,这是为了避免依着不可靠的直观,从而得出错误的“定理”或证明,而这情形在历史上曾出现过许多的例子。
4、在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。
5、牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理。
6、数学家们则持续地在争论电脑辅助证明的严谨度,当大量的计算难以被验证时,其证明亦很难说是有效地严谨。